AssertionError: Tried to export a function which references untracked resource

Issue

I wrote a unit-test in order to safe a model after noticing that I am not able to do so (anymore) during training.

@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_save_model(speech_model: Tuple[TransducerBase, SpeechFeaturesConfig]):
    model, speech_features_config = speech_model
    speech_features_config: SpeechFeaturesConfig
    channels = 3 if speech_features_config.add_delta_deltas else 1
    num_mel_bins = speech_features_config.num_mel_bins
    enc_inputs = np.random.rand(1, 50, num_mel_bins, channels)
    dec_inputs = np.expand_dims(np.random.randint(0, 25, size=10), axis=1)
    inputs = enc_inputs, dec_inputs
    model(inputs)

    # Throws KeyError:
    # graph = tf.compat.v1.get_default_graph()
    # tensor = graph.get_tensor_by_name("77040:0")

    directory = tempfile.mkdtemp(prefix=f"{model.__class__.__name__}_")
    try:
        model.save(directory)
    finally:
        shutil.rmtree(directory)

Trying to save the model will always throw the following error:

E         AssertionError: Tried to export a function which references untracked resource Tensor("77040:0", shape=(), dtype=resource). TensorFlow objects (e.g. tf.Variable) captured by functions must be tracked by assigning them to an attribute of a tracked object or assigned to an attribute of the main object directly.
E         
E         Trackable Python objects referring to this tensor (from gc.get_referrers, limited to two hops):
E         <tf.Variable 'transformer_transducer/transducer_encoder/inputs_embedding/convolution_stack/conv2d/kernel:0' shape=(3, 3, 3, 32) dtype=float32>

Note: As you can see in the code above, but I am not able to retrieve this tensor with tf.compat.v1.get_default_graph().get_tensor_by_name("77040:0").

I tried the following too, but the result is always empty:

model(batch)  # Build the model

tensor_name = "77040"

var_names = [var.name for var in model.trainable_weights]
weights = list(filter(lambda var: tensor_name in var, var_names))

var_names = [var.name for var in model.trainable_variables]
variables = list(filter(lambda var: tensor_name in var, var_names))

print(weights)
print(variables)

The problem is that I do not understand why I am getting this because the affected layer is tracked by Keras as you can see in the screenshot below. I took it during a debug-session in the call() function.

enter image description here

I have no explanation for this and I am running out of ideas what the issue might be here.

The transformations list in the screenshot is a property of and getting constructed by a layer InputsEmbedding like so:

class InputsEmbedding(layers.Layer, TimeReduction):
    def __init__(self, config: InputsEmbeddingConfig, **kwargs):
        super().__init__(**kwargs)

        if config.transformations is None or not len(config.transformations):
            raise RuntimeError("No transformations provided.")

        self.config = config

        self.transformations = list()
        for transformation in self.config.transformations:
            layer_name, layer_params = list(transformation.items())[0]
            layer = _get_layer(layer_name, layer_params)
            self.transformations.append(layer)

        self.init_time_reduction_layer()

    def get_config(self):
        return self.config.dict()


def _get_layer(name: str, params: dict) -> layers.Layer:
    if name == "conv2d_stack":
        return ConvolutionStack(**params)
    elif name == "stack_frames":
        return StackFrames(**params)
    else:
        raise RuntimeError(f"Unsupported or unknown time-reduction layer {name}")

In order to verify that the problem is not the InputsEmbedding, I created a unit-text for saving a model that is using just this particular layer.

@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_inputs_embedding_save_model():
    convolutions = [
        "filters=2, kernel_size=(3, 3), strides=(2, 1)",
        "filters=4, kernel_size=(3, 3), strides=(2, 1)",
        "filters=8, kernel_size=(3, 4), strides=(1, 1)",
    ]

    config = InputsEmbeddingConfig()
    config.transformations = [dict(conv2d_stack=dict(convolutions=convolutions)), dict(stack_frames=dict(n=2))]

    num_features = 8
    num_channels = 3

    inputs = layers.Input(shape=(None, num_features, num_channels))
    x = inputs
    x, _ = InputsEmbedding(config)(x)
    model = keras.Model(inputs=inputs, outputs=x)
    model.build(input_shape=(1, 20, num_features, num_channels))

    directory = tempfile.mkdtemp(prefix=f"{model.__class__.__name__}_")
    try:
        model.save(directory)
    finally:
        shutil.rmtree(directory)

Here I am able to save this layer without any issues:

enter image description here

ConvolutionStack

As it seems to be relevant, here is the (rather ugly) implementation of ConvolutionStack:

from typing import List

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.python.keras.layers import convolutional

from speech.lab.layers import InputsRequirements
from speech.lab.models import conv_util, models_util


class ConvolutionStack(layers.Layer):
    def __init__(
        self,
        convolutions: List[str],
        kernel_regularizer: dict = None,
        bias_regularizer: dict = None,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.config = dict(
            convolutions=convolutions,
            kernel_regularizer=kernel_regularizer,
            bias_regularizer=bias_regularizer
        )
        self.conv_stack_config = [eval(f"dict({convolution})") for convolution in convolutions]
        self.conv_blocks = list()

        if kernel_regularizer is not None:
            kernel_regularizer = models_util.maybe_to_regularizer(kernel_regularizer)
        if bias_regularizer is not None:
            bias_regularizer = models_util.maybe_to_regularizer(bias_regularizer)

        for block_config in self.conv_stack_config:
            block = _new_convolution_block(
                **block_config,
                kernel_regularizer=kernel_regularizer,
                bias_regularizer=bias_regularizer,
            )
            self.conv_blocks.append(block)

        self.drop_dim2 = layers.Lambda(tf.squeeze, arguments=dict(axis=-2))
        self.expand_last = layers.Lambda(tf.expand_dims, arguments=dict(axis=-1))

    @property
    def inputs_requirements(self) -> InputsRequirements:
        requirements, frame_look_back = conv_util.get_conv2d_stack_requirements(self.conv_stack_config)
        first = requirements[0]
        t_min, f_size = first["min_size"]
        t_grow, f_grow = first["grow_size"]
        return InputsRequirements(
            frame_look_back=frame_look_back,
            t_min=t_min,
            t_grow=t_grow,
            f_min=f_size,
            f_grow=f_grow,
        )

    def call(self, inputs, training=None, mask=None, **kwargs):
        """
        :param inputs:
            Tensor taking the form [batch, time, freq, channel]
        :param training:
        :param mask:
        :param kwargs:
        :return:
            Tensor taking the form [batch, time, freq, 1]
        """

        if training:
            t_min = self.inputs_requirements.t_min
            t_grow = self.inputs_requirements.t_grow
            pad = conv_util.get_padding_for_loss(tf.shape(inputs)[1], t_min=t_min, t_grow=t_grow)
            inputs = tf.pad(inputs, ((0, 0), (0, pad), (0, 0), (0, 0)))

            if mask is not None:
                mask = tf.pad(mask, ((0, 0), (0, pad)))

        f_min = self.inputs_requirements.f_min
        f_grow = self.inputs_requirements.f_grow
        assert (inputs.shape[2] - f_min) % f_grow == 0, (
            f'Inputs dimension "freq" ' f"expected to be {f_min} + n * {f_grow}  but got {inputs.shape[2]} instead."
        )

        x = inputs
        for block in self.conv_blocks:

            for layer in block:

                if mask is not None and isinstance(layer, convolutional.Conv):
                    st, _ = layer.strides
                    kt = tf.maximum(layer.kernel_size[0] - 1, 1)
                    mask = mask[:, :-kt][:, ::st]
                    mask = tf.pad(mask, ((0, 0), (0, tf.maximum(2 - layer.kernel_size[0], 0))))

                x = layer(x, training=training)

        return self.expand_last(self.drop_dim2(x)), mask

    def get_config(self):
        return self.config


def _new_convolution_block(
    filters: int,
    kernel_size: tuple,
    strides: tuple,
    use_bias: bool = False,
    use_norm: bool = True,
    kernel_regularizer=None,
    bias_regularizer=None,
    activation=None,
):
    assert strides[0] % 2 == 0 or strides[0] == 1, "Strides on the time axis must be divisible by 2 or be exactly 1."

    if activation is not None:
        activation_layer = layers.Activation(activation)
    else:
        activation_layer = layers.Lambda(lambda x: x)

    if use_norm:
        norm_layer = layers.LayerNormalization()
    else:
        norm_layer = layers.Lambda(lambda x: x)

    return (
        layers.Conv2D(
            filters=filters,
            kernel_size=kernel_size,
            strides=strides,
            use_bias=use_bias,
            kernel_regularizer=kernel_regularizer,
            bias_regularizer=bias_regularizer,
        ),
        norm_layer,
        activation_layer,
    )

See also

Solution

Using

  • tensorflow v2.5.0
  • Python: 3.9

It appears that the problem occurs when we declare/define a layer as class-variable. I can only assume that the problem has to do with the internal Keras logic, which probably makes sense, but imo it’s not obvious to the user and I don’t think I have ever seen a hint pointing out that this can be an issue.

So, in my project I am having the following:

class Model(keras.Model):
    inputs_embedding: InputsEmbedding = None  # <-- This caused the problem

    def __init__(config, *args, **kwargs):
        super().__init__(*args, **kwargs)
        if config.embeddings is not None:
            self.inputs_embedding = InputsEmbedding(config.embeddings)
        # ...

MVP Example

The following example creates an instances of ModelA, ModelB, ModelC and ModelD. Model A and B can be saved but C cannot. From what I can tell, it does not work to declarea layer which has trainable weights as class-variable. However, it does seem to work for layers which do not have trainable weights (see ModelB).

Please note how ModelD can be saved though. The difference to ModelB is that the layer gets only declared and not defined as None which leads to the question why ModelC works though.

Source Code

import tempfile

import numpy as np
import tensorflow as tf
from tensorflow.keras import layers


class ModelA(tf.keras.Model):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.model_layer = layers.LayerNormalization()

    def call(self, inputs, training=None, mask=None):
        return self.model_layer(inputs)

    def get_config(self):
        return dict()


class ModelB(tf.keras.Model):
    model_layer: layers.Layer = None

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # This is probably working because layers.Lambda has no trainable variables
        self.model_layer = layers.Lambda(lambda x: x)

    def call(self, inputs, training=None, mask=None):
        return self.model_layer(inputs)

    def get_config(self):
        return dict()


class ModelC(tf.keras.Model):
    model_layer: layers.Layer = None

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.model_layer = layers.LayerNormalization()

    def call(self, inputs, training=None, mask=None):
        return self.model_layer(inputs)

    def get_config(self):
        return dict()


class ModelD(tf.keras.Model):
    model_layer: layers.Layer

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.model_layer = layers.LayerNormalization()

    def call(self, inputs, training=None, mask=None):
        return self.model_layer(inputs)

    def get_config(self):
        return dict()


def save_tmp_model(model: tf.keras.Model):
    name = model.__class__.__name__
    print(f'Saving model {name}')
    try:
        model.save(tempfile.mkdtemp(prefix=f"{name}_"))
    except Exception as e:
        print(f"Unable to save model: {name}")
        print('Error message:')
        print(str(e))
        return

    print(f".. success!")


def main():
    inputs = np.random.rand(1, 50, 16)

    model_a = ModelA()
    model_b = ModelB()
    model_c = ModelC()
    model_d = ModelD()

    # Build models
    model_a(inputs)
    model_b(inputs)
    model_c(inputs)
    model_d(inputs)

    # Save models
    save_tmp_model(model_a)
    save_tmp_model(model_b)
    save_tmp_model(model_c)
    save_tmp_model(model_d)


if __name__ == '__main__':
    main()

Output

Saving model ModelA
.. success!
Saving model ModelB
.. success!
Saving model ModelC
Unable to save model: ModelC
Error message:
Tried to export a function which references untracked resource Tensor("1198:0", shape=(), dtype=resource). TensorFlow objects (e.g. tf.Variable) captured by functions must be tracked by assigning them to an attribute of a tracked object or assigned to an attribute of the main object directly.

Trackable Python objects referring to this tensor (from gc.get_referrers, limited to two hops):
<tf.Variable 'model_c/layer_normalization_1/gamma:0' shape=(16,) dtype=float32>
Saving model ModelD
.. success!

Answered By – Stefan Falk

This Answer collected from stackoverflow, is licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0

Leave a Reply

(*) Required, Your email will not be published