Building an SVM with Tensorflow


I currently have two numpy arrays:

  • X – (157, 128) – 157 sets of 128 features
  • Y – (157) – classifications of the feature sets

This is the code I have written to attempt to build a linear classification model of these features.

First of all I adapted the arrays to a Tensorflow dataset:

train_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"x": X},

I then tried to fit an SVM model:

svm = tf.contrib.learn.SVM(
    example_id_column='example_id', # not sure why this is necessary
    feature_columns=tf.contrib.learn.infer_real_valued_columns_from_input(X), # create feature columns (not sure why this is necessary) 
    l2_regularization=0.1), steps=10)

But this just returns the error:

WARNING:tensorflow:float64 is not supported by many models, consider casting to float32.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpf1mwlR
WARNING:tensorflow:tf.variable_op_scope(values, name, default_name) is deprecated, use tf.variable_scope(name, default_name, values)
Traceback (most recent call last):
  File "/var/www/", line 59, in <module>, steps=10)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/util/", line 316, in new_func
    return func(*args, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/", line 480, in fit
    loss = self._train_model(input_fn=input_fn, hooks=hooks)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/", line 985, in _train_model
    model_fn_ops = self._get_train_ops(features, labels)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/", line 1201, in _get_train_ops
    return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/", line 1165, in _call_model_fn
    model_fn_results = self._model_fn(features, labels, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/", line 244, in sdca_model_fn
    features.update(layers.transform_features(features, feature_columns))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/layers/python/layers/", line 656, in transform_features
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/layers/python/layers/", line 847, in transform
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/layers/python/layers/", line 1816, in insert_transformed_feature
    input_tensor = self._normalized_input_tensor(columns_to_tensors[])
KeyError: ''

What am I doing wrong?


Here’s an SVM usage example which does not throw an error:

import numpy
import tensorflow as tf

X = numpy.zeros([157, 128])
Y = numpy.zeros([157], dtype=numpy.int32)
example_id = numpy.array(['%d' % i for i in range(len(Y))])

x_column_name = 'x'
example_id_column_name = 'example_id'

train_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={x_column_name: X, example_id_column_name: example_id},

svm = tf.contrib.learn.SVM(
        column_name=x_column_name, dimension=128),),
    l2_regularization=0.1), steps=10)

Examples passed to the SVM Estimator need string IDs. You can probably substitute back infer_real_valued_columns_from_input, but you would need to pass it a dictionary so it picks up the right name for the column. In this case it’s conceptually simpler to just construct the feature column yourself.

Answered By – Allen Lavoie

This Answer collected from stackoverflow, is licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0

Leave a Reply

(*) Required, Your email will not be published