Issue
I am trying to evaluate a model with 2 inputs and 1 output, each input goes to separate pretrained model and then the output from both the models get averaged. I am using the same data for both the inputs.
test_dir = 'D:\Graduation_project\Damage type not collected'
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255,)
test_set = test_datagen.flow_from_directory(test_dir,
class_mode = 'categorical',
batch_size = 16,
target_size=(150,150))
test_set1 = test_datagen.flow_from_directory(test_dir,
class_mode = 'categorical',
batch_size = 16,
target_size=(150,150))
loading first model and renaming the layers
def load_dense_model():
densenet = tf.keras.models.load_model('D:\Graduation_project\saved models\damage_type_model.h5', compile=False)
for i, layer in enumerate(densenet.layers):
layer._name = 'Densenet_layer' + str(i)
return densenet
loading second model
def load_vgg19_model():
vgg19 = tf.keras.models.load_model('D:\Graduation_project\saved models\damage_type_VGG19.h5', compile=False)
return vgg19
creating ensemble model
def ensamble_model(first_model, second_model):
densenet = first_model()
vgg19 = second_model()
output_1 = densenet.get_layer('Densenet_layer613')
output_2 = vgg19.get_layer('dense_4')
avg = tf.keras.layers.Average()([output_1.output, output_2.output])
model = Model(inputs=[densenet.input, vgg19.input], outputs=avg)
return model
METRICS = [
'accuracy',
tf.metrics.TruePositives(name='tp'),
tf.metrics.FalsePositives(name='fp'),
tf.metrics.TrueNegatives(name='tn'),
tf.metrics.FalseNegatives(name='fn'),
tf.metrics.Precision(name='precision'),
tf.metrics.Recall(name='recall'),
tfa.metrics.F1Score(name='F1_Score', num_classes=5),
tfa.metrics.MultiLabelConfusionMatrix(num_classes=5)
]
model = ensamble_model(load_dense_model, load_vgg19_model)
compiling and evaluating the model
model.compile(optimizer = 'adam' , loss ='binary_crossentropy',
metrics = 'accuracy')
model.evaluate({'Densenet_layer0':test_set1, 'input_2':test_set})
evaluate() fails to run
ValueError: Failed to find data adapter that can handle input: (<class 'dict'> containing {"<class 'str'>"} keys and {"<class 'tensorflow.python.keras.preprocessing.image.DirectoryIterator'>"} values), <class 'NoneType'>
Solution
My guess is that your model complaining because you are feeding a dict
/list
of iterators that yield an image each, instead of feeding an iterator that yields the image twice (once for each model).
What would happen if you wrap your DirectoryIterator
on a generator that can feed the data correctly?
def gen_itertest(test_dir):
test_set = test_datagen.flow_from_directory(test_dir,
class_mode = 'categorical',
batch_size = 16,
target_size=(150,150))
for i in range(len(test_set)):
x = test_set.next()
yield [x[0], x[0]], x[1] # Twice the input, only once the label
and then you can feed this to the evaluate
testset = gen_itertest('D:\Graduation_project\Damage type not collected')
result = model.evaluate(testset)
I am not sure this will work but because you haven’t provide us with a minimal, reproducible example, I am not going to do one to test it.
Answered By – Albert Alonso
This Answer collected from stackoverflow, is licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0